Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioact Mater ; 25: 86-94, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36733929

RESUMO

Magnesium (Mg)-based implants have re-emerged in orthopaedic surgery as an alternative to permanent implants. Literature reveals little information on how the degradation of biodegradable implants may introduce safety implications for patient follow-up using medical imaging. Magnetic resonance imaging (MRI) benefits post-surgery monitoring of bone healing and implantation sites. Previous studies demonstrated radiofrequency (RF) heating of permanent implants caused by electromagnetic fields used in MRI. Our investigation is the first to report the effect of the degradation layer on RF-induced heating of biodegradable orthopaedic implants. WE43 orthopaedic compression screws underwent in vitro degradation. Imaging techniques were applied to assess the corrosion process and the material composition of the degraded screws. Temperature measurements were performed to quantify implant heating with respect to the degradation layer. For comparison, a commercial titanium implant screw was used. Strongest RF induced heating was observed for non-degraded WE43 screw samples. Implant heating had shown to decrease with the formation of the degradation layer. No statistical differences were observed for heating of the non-degraded WE43 material and the titanium equivalent. The highest risk of implant RF heating is most pronounced for Mg-based screws prior to degradation. Amendment to industry standards for MRI safety assessment is warranted to include biodegradable materials.

2.
Regen Biomater ; 10: rbac077, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36683753

RESUMO

Magnesium (Mg)-based implants are highly attractive for the orthopedic field and may replace titanium (Ti) as support for fracture healing. To determine the implant-bone interaction in different bony regions, we implanted Mg-based alloy ZX00 (Mg < 0.5 Zn < 0.5 Ca, in wt%) and Ti-screws into the distal epiphysis and distal metaphysis of sheep tibiae. The implant degradation and osseointegration were assessed in vivo and ex vivo after 4, 6 and 12 weeks, using a combination of clinical computed tomography, medium-resolution micro computed tomography (µCT) and high-resolution synchrotron radiation µCT (SRµCT). Implant volume loss, gas formation and bone growth were evaluated for both implantation sites and each bone region independently. Additionally, histological analysis of bone growth was performed on embedded hard-tissue samples. We demonstrate that in all cases, the degradation rate of ZX00-implants ranges between 0.23 and 0.75 mm/year. The highest degradation rates were found in the epiphysis. Bone-to-implant contact varied between the time points and bone types for both materials. Mostly, bone-volume-to-total-volume was higher around Ti-implants. However, we found an increased cortical thickness around the ZX00-screws when compared with the Ti-screws. Our results showed the suitability of ZX00-screws for implantation into the distal meta- and epiphysis.

3.
Bioact Mater ; 6(12): 4368-4376, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33997513

RESUMO

Magnesium is attractive for the application as a temporary bone implant due to its inherent biodegradability, non-toxicity and suitable mechanical properties. The degradation process of magnesium in physiological environments is complex and is thought to be a diffusion-limited transport problem. We use a multi-scale imaging approach using micro computed tomography and transmission X-ray microscopy (TXM) at resolutions below 40 nm. Thus, we are able to evaluate the nanoporosity of the degradation layer and infer its impact on the degradation process of pure magnesium in two physiological solutions. Magnesium samples were degraded in simulated body fluid (SBF) or Dulbecco's modified Eagle's medium (DMEM) with 10% fetal bovine serum (FBS) for one to four weeks. TXM reveals the three-dimensional interconnected pore network within the degradation layer for both solutions. The pore network morphology and degradation layer composition are similar for all samples. By contrast, the degradation layer thickness in samples degraded in SBF was significantly higher and more inhomogeneous than in DMEM+10%FBS. Distinct features could be observed within the degradation layer of samples degraded in SBF, suggesting the formation of microgalvanic cells, which are not present in samples degraded in DMEM+10%FBS. The results suggest that the nanoporosity of the degradation layer and the resulting ion diffusion processes therein have a limited influence on the overall degradation process. This indicates that the influence of organic components on the dampening of the degradation rate by the suppression of microgalvanic degradation is much greater in the present study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...